Magnetic Forces on Electric Current-carrying conductors

Physics Problems with Solutions
SAT Physics Practice Questions
Forces in Physics, tutorials and Problems with Solutions
Linear Momentum and Collisions
Vectors
Motion Examples an Problems with Solutions
Optics Tutorials, Examples and Questions with Solutions.
Projectiles in Physics
Electrostatic
Examples and Problems in Magnetism and Electromagnetism
Interactive Physics HTML5 applets

Custom Search

Custom Search

Force Acting on a Current Carrying Wire

A current carrying wire of length L in a magnetic field B experiences a force F given

vector product of current and magnetic field that gives force

F is the force exerted on the wire, i is the current in the wire and B is the force all represented by vectors. Hence the force is given by the cross product of vectors i and B multiplied by the length of the wire.
The magnitude of F is given by
F = L i B sin(theta) (from the magnitude of cross product)
If B is perpendicular to the wire, the above simplifies to
F = L i B


Example 1:
In the figure below, a magnetic field B out of the page exerts a force F (downward) on the current directed to the left. Again the right hand rule was used to find the direction of F as follows:
- Point the index finger in the direction of the current i
- Point the middle finger in the direction of the magnetic field B
and the thumb gives the direction of the force F.

Force on a current carrying wire due to magnetic field

Example 2:
A wire of length 150 cm carrying an electric current of 0.1 A in the negative x direction and perpendicular to a magnetic field B, experiences a force of 6.0 × 10-3 N in the positive y direction due to a magnetic field. Find a) the magnitude and b) direction of the magnetic field.

Solution:
a) The magnitude may be found by using the formula
F = L i B sin(θ)
where L is the length given as 1.5 meters, i also given as 0.1 A and the magnitude of force F equal to 6.0 × 10-3 N. Angle θ between i and B also given and equal to 90°. Hence
B = F / (L i sin(90°) = 6.0 × 10-3 N / (1.5 × m × 0.1 A) = 4.0 × 10-2 T
b) To find the direction, we first draw the vectors i and F representing the current and the force F as shown on the left. Then apply the right hand rule twice once with B upward and once with B downward and the one that correspond to the right hand rule (index in the direction of i, middle finger in the direction of B and the thumb gives the direction of F). The result is shown on the right.(see figure below).

Force on a current carrying wire due to magnetic field, example 2



Physics Problems with Solutions -- Motion -- Forces in Physics, tutorials and Problems with Solutions --
Linear Momentum and Collisions -- Electrostatic -- Practice Tests Questions -- Vectors -- projectiles in Physics
Examples and Problems in Magnetism and Electromagnetism -- Optics Tutorials, Examples and Questions with Solutions.
-- Interactive Physics HTML5 applets


Author - e-mail


Updated: 26 September 2015

Copyright © 2012 - 2015 - All rights reserved