Consider a projectile launched with initial velocity \(v_0\) at angle \(\theta\) above the horizontal. Neglecting air resistance, the only force is gravity with acceleration \(g = 9.8 \text{ m/s}^2\).
Explore projectile motion interactively: Interactive Simulation. Practice with solved examples: Projectile Problems with Solutions.
The initial velocity vector \(\vec{V}_0\) has components:
\[ V_{0x} = V_0 \cos\theta \quad \text{and} \quad V_{0y} = V_0 \sin\theta \]Acceleration components (constant):
\[ a_x = 0 \quad \text{and} \quad a_y = -g = -9.8 \text{ m/s}^2 \]Horizontal velocity remains constant:
\[ V_x(t) = V_0 \cos\theta \]Vertical velocity changes uniformly:
\[ V_y(t) = V_0 \sin\theta - g t \]Horizontal displacement:
\[ x(t) = V_0 \cos\theta \cdot t \]Vertical displacement:
\[ y(t) = V_0 \sin\theta \cdot t - \frac{1}{2} g t^2 \]Eliminate time \(t\) from displacement equations:
From \(x(t)\): \(t = \frac{x}{V_0 \cos\theta}\)
Substitute into \(y(t)\):
\[ y = \frac{V_0 \sin\theta \cdot x}{V_0 \cos\theta} - \frac{1}{2} g \left( \frac{x}{V_0 \cos\theta} \right)^2 \]Simplify to obtain the parabolic trajectory:
\[ y = x \tan\theta - \frac{g x^2}{2 V_0^2 \cos^2\theta} \]This has the form \(y = Ax^2 + Bx\) where:
\[ A = -\frac{g}{2 V_0^2 \cos^2\theta} \quad \text{and} \quad B = \tan\theta \]Total time projectile remains airborne: solve \(y(t) = 0\) for \(t > 0\)
\[ V_0 \sin\theta \cdot t - \frac{1}{2} g t^2 = 0 \] \[ t\left(V_0 \sin\theta - \frac{1}{2} g t\right) = 0 \]Non-zero solution:
\[ T = \frac{2 V_0 \sin\theta}{g} \]At peak height (\(B\)), vertical velocity \(V_y = 0\):
\[ V_0 \sin\theta - g t = 0 \quad \Rightarrow \quad t = \frac{V_0 \sin\theta}{g} \]Substitute into \(y(t)\):
\[ H = V_0 \sin\theta \left( \frac{V_0 \sin\theta}{g} \right) - \frac{1}{2} g \left( \frac{V_0 \sin\theta}{g} \right)^2 \] \[ H = \frac{V_0^2 \sin^2\theta}{2g} \]Total horizontal distance when projectile lands (\(C\)):
\[ R = x(T) = V_0 \cos\theta \cdot T = V_0 \cos\theta \cdot \frac{2 V_0 \sin\theta}{g} \] \[ R = \frac{V_0^2 \sin(2\theta)}{g} \]