AP Physics multiple choice questions on magnetic fields, forces, and electromagnetic induction. Each question includes detailed solutions at the bottom of the page.
A proton moves at 2×10⁶ m/s perpendicular to a 0.5 T magnetic field. What is the magnetic force on the proton? (q = 1.6×10⁻¹⁹ C)
A) 1.6×10⁻¹³ N
B) 3.2×10⁻¹³ N
C) 6.4×10⁻¹³ N
D) 8.0×10⁻¹³ N
E) 1.6×10⁻¹² N
A wire carrying 5 A current is placed in a 0.4 T magnetic field at 30° to the field. If the wire length in the field is 0.2 m, what is the magnetic force on the wire?
A) 0.2 N
B) 0.3 N
C) 0.4 N
D) 0.5 N
E) 0.6 N
A circular loop of radius 0.1 m carries 2 A current. What is the magnetic field at its center? (μ₀ = 4π×10⁻⁷ T·m/A)
A) π×10⁻⁶ T
B) 8π×10⁻⁶ T
C) 1.26×10⁻⁵ T
D) 2.51×10⁻⁵ T
E) 5.02×10⁻⁵ T
A square loop of side 0.2 m has resistance 2 Ω. The magnetic field through it changes from 0 to 0.5 T in 0.1 s. What is the average induced current?
A) 0.01 A
B) 0.02 A
C) 0.05 A
D) 0.10 A
E) 0.20 A
Two parallel wires 0.1 m apart carry currents of 3 A and 5 A in opposite directions. What is the force per unit length between them?
A) 3×10⁻⁵ N/m attractive
B) 3×10⁻⁵ N/m repulsive
C) 6×10⁻⁵ N/m attractive
D) 6×10⁻⁵ N/m repulsive
E) 1.5×10⁻⁴ N/m repulsive
A) 1.6×10⁻¹³ N
\( F = qvB \sin\theta = 1.6 \times 10^{-19} \times 2 \times 10^6 \times 0.5 \times \sin 90^\circ \)
\( = 1.6 \times 10^{-13}\, \text{N} \)
A) 0.2 N
\( F = ILB \sin\theta = 5 \times 0.2 \times 0.4 \times \sin 30^\circ \)
\( = 5 \times 0.2 \times 0.4 \times 0.5 = 0.2\, \text{N} \)
C) 1.26×10⁻⁵ T
\( B = \dfrac{\mu_0 I}{2R} = \dfrac{4\pi \times 10^{-7} \times 2}{2 \times 0.1} \)
\( = \dfrac{8\pi \times 10^{-7}}{0.2} = 4\pi \times 10^{-6} = 1.26 \times 10^{-5}\, \text{T} \)
D) 0.10 A
Area: \( A = (0.2)^2 = 0.04\,\text{m}^2 \)
\( \Delta \Phi = B_2 A - B_1 A = 0.5 \times 0.04 - 0 = 0.02\, \text{Wb} \)
\( \varepsilon = \dfrac{\Delta \Phi}{\Delta t} = \dfrac{0.02}{0.1} = 0.2\,\text{V} \)
\( I = \dfrac{\varepsilon}{R} = \dfrac{0.2}{2} = 0.10\,\text{A} \)
B) 3×10⁻⁵ N/m repulsive
\( \dfrac{F}{L} = \dfrac{\mu_0 I_1 I_2}{2\pi d} = \dfrac{4\pi \times 10^{-7} \times 3 \times 5}{2\pi \times 0.1} \)
\( = \dfrac{60\pi \times 10^{-7}}{0.2\pi} = 300 \times 10^{-7} = 3 \times 10^{-5}\, \text{N/m} \)
Opposite currents repel, so repulsive force