Refraction of Light Rays: Examples and Solutions

Refraction of Light Rays at Interfaces

Light travels at different speeds in different media. In vacuum, light speed is \(c = 3 \times 10^8 \text{ m/s}\), the maximum possible speed in physics.

The refractive index \(n\) measures a medium's optical density and is defined as: \[ n = \frac{c}{v} \] where \(v\) is light speed in the medium. Higher \(n\) indicates greater optical density.

Example 1

What is the refractive index of a medium where light speed is \(1.5 \times 10^8 \text{ m/s}\)?

Solution

\[ n = \frac{c}{v} = \frac{3 \times 10^8}{1.5 \times 10^8} = 2 \]

Example 2

Find light speed in water with refractive index \(n = 1.33\).

Solution

\[ 1.33 = \frac{3 \times 10^8}{v} \quad \Rightarrow \quad v = \frac{3 \times 10^8}{1.33} \approx 2.26 \times 10^8 \text{ m/s} \]

Snell's Law of Refraction

Refraction occurs at interfaces between media with different refractive indices, causing light bending.

Refraction diagram showing incident and refracted rays

Snell's Law: \[ n_1 \sin\theta_i = n_2 \sin\theta_r \] where:

Refraction explains phenomena like bent objects in water and rainbow formation.

Pen appearing bent in water due to refraction Rainbow formed by light refraction and dispersion

Example 3

A light ray in glass (\(n_1 = 1.52\)) strikes a glass-water interface (\(n_2 = 1.32\)) at \(25^\circ\). Find the refraction angle.
Example 3 refraction diagram

Solution

\[ 1.52 \sin 25^\circ = 1.32 \sin\theta_r \quad \Rightarrow \quad \theta_r = \arcsin\left(\frac{1.52}{1.32} \sin 25^\circ\right) \approx 29.1^\circ \]

Example 4

What incidence angle in air (\(n_1 = 1\)) yields a \(30^\circ\) refraction angle in water (\(n_2 = 1.32\))?
Example 4 refraction diagram

Solution

\[ 1 \cdot \sin\theta_i = 1.32 \sin 30^\circ \quad \Rightarrow \quad \theta_i = \arcsin(1.32 \times 0.5) \approx 41.3^\circ \]

Example 5

A light ray enters a glass block of width \(w\) at angle \(\theta_i\) and emerges at angle \(\theta_i'\).
Example 5 refraction through a block
a) Show \(\theta_i' = \theta_i\) and that incident/emerging rays are parallel.
b) Find lateral displacement \(d\) in terms of \(\theta_i\), \(n_1\), \(n_2\), and \(w\).
c) Calculate \(d\) for \(n_1=1\), \(n_2=1.55\), \(w=3\text{ cm}\), \(\theta_i=32^\circ\).

Solution

a) Apply Snell's Law at both interfaces: \[ \begin{aligned} \text{Point A: } & n_1 \sin\theta_i = n_2 \sin\theta_j \\ \text{Point B: } & n_2 \sin\theta_k = n_1 \sin\theta_i' \end{aligned} \] Since normals are parallel, \(\theta_j = \theta_k\). Thus: \[ n_1 \sin\theta_i = n_2 \sin\theta_j = n_2 \sin\theta_k = n_1 \sin\theta_i' \quad \Rightarrow \quad \theta_i' = \theta_i \] Hence, rays are parallel.

b) From geometry: \[ \begin{aligned} AB &= \frac{w}{\cos\theta_j}, \quad \alpha = \theta_i - \theta_j \\ \sin\alpha &= \frac{d}{AB} = \frac{d\cos\theta_j}{w} \\ \Rightarrow d &= \frac{w \sin(\theta_i - \theta_j)}{\cos\theta_j} \end{aligned} \] where \(\theta_j = \arcsin\left(\frac{n_1}{n_2} \sin\theta_i\right)\).

c) Substitute values: \[ \begin{aligned} \theta_j &= \arcsin\left(\frac{1}{1.55} \sin 32^\circ\right) \approx 20.0^\circ \\ d &= \frac{3 \sin(32^\circ - 20^\circ)}{\cos 20^\circ} \approx 0.7 \text{ cm} \end{aligned} \]

More References and Links