Total Internal Reflection of Light Rays at an Interface

Total Internal Reflection

Consider a light ray incident from a medium with refractive index \(n_1 = 1.1\) to a medium with refractive index \(n_2 = 1.0\). Let \(i\) be the angle of incidence and \(t\) the angle of refraction.

Light refraction at interface

According to Snell's law:

\[ n_1 \sin(i) = n_2 \sin(t) \]

Solving for \(t\):

\[ t = \arcsin\left(\frac{n_1}{n_2} \sin(i)\right) \]

Values for different angles of incidence:

Angle \(i\) \(\sin(t) = \frac{n_1}{n_2} \sin(i)\) \(t = \arcsin\left(\frac{n_1}{n_2} \sin(i)\right)\)
\(40^\circ\) 0.70 \(45.0^\circ\)
\(65.39^\circ\) 1.0 \(90.0^\circ\)
\(75^\circ\) 1.06
(sine cannot exceed 1)
No refraction
Total reflection occurs

Critical Angle

Since \(n_1 > n_2\), there exists a critical angle \(i_c\) where the refracted angle becomes \(90^\circ\). From the table, \(i_c = 65.39^\circ\). Any incidence angle greater than \(i_c\) results in total internal reflection.

Critical angle and total internal reflection

Using Snell's law when \(t = 90^\circ\):

\[ n_1 \sin(i_c) = n_2 \sin(90^\circ) = n_2 \]

Thus:

\[ \sin(i_c) = \frac{n_2}{n_1} \]

\[ i_c = \arcsin\left(\frac{n_2}{n_1}\right) \]

For \(i > i_c\), no refraction occurs—the ray is completely reflected back into medium \(n_1\).

Example 1

A light ray in water (\(n_1 = 1.3\)) strikes a water-air interface (\(n_2 = 1.0\)) at \(10^\circ\) to the normal.

Example 1: Water-air interface

a) Find the angle of refraction.
b) What incidence angle gives refraction ≤ \(45^\circ\)?
c) Determine the critical angle.

Solution

a) Using Snell's law:

\[ 1.3 \sin(10^\circ) = 1.0 \sin(t) \]

\[ t = \arcsin(1.3 \sin(10^\circ)) \approx 13.0^\circ \]

b) For \(t \leq 45^\circ\):

\[ \sin(t) \leq \frac{\sqrt{2}}{2} \]

\[ 1.3 \sin(i) \leq \frac{\sqrt{2}}{2} \]

\[ \sin(i) \leq \frac{\sqrt{2}}{2.6} \]

\[ i \leq \arcsin\left(\frac{\sqrt{2}}{2.6}\right) \approx 33.0^\circ \]

c) Critical angle:

\[ i_c = \arcsin\left(\frac{1.0}{1.3}\right) \approx 50.3^\circ \]

Example 2

An optical fiber has a glass core (\(n_1 = 1.5\)) surrounded by cladding with lower refractive index \(n_2\).

Example 2: Optical fiber

a) Find \(n_2\) so the core-cladding critical angle is \(80^\circ\).
b) For what ray angles \(\alpha\) with the fiber axis is the incidence angle \(i\) greater than this critical angle?

Solution

a) Using the critical angle formula:

\[ \sin(80^\circ) = \frac{n_2}{1.5} \]

\[ n_2 = 1.5 \sin(80^\circ) \approx 1.48 \]

b) Geometry gives \(i = 90^\circ - \alpha\). For total internal reflection:

\[ i > i_c \implies 90^\circ - \alpha > 80^\circ \]

\[ \alpha < 10^\circ \]

Thus, rays within \(10^\circ\) of the fiber axis undergo total internal reflection.

Example 3

Which paths are possible for light going from \(n_1 = 1.7\) to \(n_2 = 1.0\)?

Example 3: Multiple ray paths

A) I only B) II only C) I and II only D) I, II and IV only E) IV only

Solution

Case I (normal incidence): transmission without bending — possible.
Case II (\(n_1 > n_2\)): refraction away from normal — possible.
Cases III & IV show refraction toward normal, which requires \(n_1 < n_2\) — impossible here.
Answer: C

More References and Links

  1. Reflection of Light Rays, Examples and Solutions
  2. Refraction of Light Rays, Examples and Solutions